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Scattering, of X-rays  by Defect Structures. III. The Effect of Interstitial 
Atoms and Vacancies 

BY W. COCHRAN AND G. KARTHA 

Crystallographic Laboratory, Cavendish Laboratory, Cambridge, England 

(Received 22 March 1956) 

The effect, on the X-ray diffraction pattern, of a random distribution of interstitial atoms and 
vacancies in a single crystal of copper has been calculated on the basis of a model proposed by 
Huntingdon for the displacement of the atoms round such defects. Interstitials have a much greater 
influence than vacancies, and should produce observable X-ray effects when their concentration 
exceeds about 1%. Iso-diffusion contours near reciprocal-lattice points have a very characteristic 
shape. 

1. I n t r o d u c t i o n  

The irradiation of certain crystals with fast particles 
introduces lattice defects which are thought to be 
approximately equal concentrations of interstitial 
atoms and vacancies. The distribution of these defects 
throughout the crystal can be inferred only rather 
indirectly, but it appears that  in some cases it can 
be regarded as a mixture of isolated interstitials and 
vacancies, together with regions of more concentrated 
damage. These conclusions have come mainly from 
resistivity measurements on irradiated metals, and 
optical measurements on alkali halides. Tucker & 
Senio (1955a, 1955b) have shown experimentally that  
pronounced X-ray scattering effects of the type pre- 
dicted by Huang (1947) result from a sufficient con- 
centration of such localized static lattice defects. In 
this paper we calculate the intensity of diffuse scat- 
tering, and the change of intensity of the Laue--Bragg 
reflexions that  would result from a random distribu- 
tion of interstitials and vacancies. We also consider 
briefly the effects of other possible distributions of 
defects. The effects predicted are qualitatively the 
same as were predicted by Huang, since we have used 
essentially the same model to represent the displace- 
ments of atoms by a defect, but we have been able to 
put them on a quantitative basis for a particular 
material, namely copper. The choice of material was 
dictated by the fact that  for copper the displacement 
of atoms around a vacancy or an interstitial has been 
calculated by an approximate method (Huntingdon, 
1953). This choice is unfortunate in that  comparison 
of theory with experiment would be very difficult, as 
Cooper, Koehler & Marx (1954) have shown that  
appreciable thermal recovery of the metal occurs 
even at temperatures as low as 40 ° K. Our method of 
calculation, and possibly some of the conclusions, 
should, however, apply to other irradiated materials 
of simple crystal structure, including diamond, which 
is known to show X-ray effects at room temperature 
(Tucker & Senio, 1955b). 

2. X - r a y  s c a t t e r i n g  by  a s i n g l e  defect  

In this section we make use of the theory given by 
Cochran (1956; referred to here as Part  I) to calculate 
the effect of a single defect. A single interstitial atom 
is imagined, occupying the body-centre position of a 
face-centred cubic unit cell and at the centre of a 
spherical crystal of radius ~2. The displacement e 1 of 
surrounding atoms at r can, unless r is small, be 
idealized as that  due to a centre of pressure in a 
continuous elastic medium, which is (Huang, 1947; 
Eshelby, 1954) 

{ r  2 (1 -2a)  r } _  
e 1 = c  ~ +  l + a  ~i~a . (2-1) 

Here a is Poisson's ratio, and, putting :~ = 
3(1-a) / ( l+a) ,  the displacement of an atom at the 
surface of the sphere is 

e~, ,~ .  = y c / ~ ? ~  2 , (2-2) 

from which it can be shown that the fractional change 
in average unit cell side is 

da 4g~,c 
a - 3N-----~ ' (2.3) 

where v = ¼a a is the atomic volume, and N the number 
of atoms in the crystal. The theory given in Part  I 
shows that  the displacement which is effective for 
X-ray scattering is that  given by (2-1)~ less any 
component that  merely contributes to an expansion 
of the lattice. From (2-2), this component is ~,cr/~ a, 
and the effective displacement is 

e = e l -~ - -~  = c ~ -  (2-4) 

We have verified that  the term in ~ - a  has a negligible 
effect on the intensity, and shall therefore take 
e = cr/r a. 

For copper the value of c has been calculated as 
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1"87±0.37 (Huntingdon, quoted by Tucker & Sampson 
(1954)). The expression (2-1) cannot apply to atoms 
which are close to the interstitial, and for the 38 atoms 
within a sphere of radius r 0 = 4.7 ~ we have taken the 
displacements to be radially outwards and of amount 
shown in Fig. 1. These displacements are as given by 

• z = O  

Oz=-+.o/2 
o ! Oz=+<, 

Fig. 1. Representa t ion  of displacements  a round the  intersti t ial  
a tom,  assumed to be at  the  centre of a sphere of radius 4.7 A. 
Posit ions of neighbours  denoted  in project ion along the  cube 
axis, a toms at  different levels being shown in different sizes. 
Radial  displacement  for 6 nearest  neighbours (A) is 0.39 A, 
for 8 nex t  nearest  (B) is 0.13/~ and  for the  24 th i rd  nearest  
neighbours is 0.07 A. 

Huntingdon's  (1953) calculations, except tha t  we have 
taken second nearest neighbours to be displaced as 
shown. 

The Fourier transform of a defect ~, as defined in 
Par t  I, is now given exactly by 

T0(S) = f + f X ,  ( - c o s  2~RL" S+cos  2~(RL+eL) ' S ) ,  
(2.5) 

where R L locates an atom whose effective displace- 
ment  is Ez, and S is a vector in reciprocal space. We 
may  conveniently regard T~(S) as the sum of a con- 
tr ibution from atoms with RL < re, denoted T~I(S), 
and one from those with r 0 < R L < ,~ ,  denoted 
T~2(S). To a good approximation we then have 
(cf. equation (3.6) of Par t  I), 

= / 2  -½(2  N 

x cos 2~R~. S-2~-~.~ Rz" S s in2~R z. S . (2.6) 

The sum is over all atoms for which r o < RL < ~ .  
If we now take S _< 1.3 A -1 (limit of Cu K radia- 

tion) and note tha t  the maximum displacement of an 
atom beyond r o is 0.07 /~ for c = 1.87 /~3 and a = 
3.60/~, it is found tha t  at least near reciprocal-lattice 
points the first term in the bracket of (2.6) is quite 
negligible compared with the second, except exactly 
at reciprocal-lattice points, where the second is zero. 

Reciprocal-lattice points are at S = H, where H = 
(h + k + 1)a* and h + k, lc +l, and h + l  are even. We 
write S - H  = g, so tha t  g is as defined by James  
(1948) in the theory of thermal diffuse scattering. I t  
then follows from Par t  I tha t  

T~2 (S) = - S f  .~, ( - 1 )h+~+z 4 ~c 
H Vg 

~sin 2~rog sin 2 g ~ g [  
× cos (S, g) / 2~-~0g  ~ - ~  j .  (2-7) 

The factor ( - 1 )  h+k+~ appears because of the choice of 
origin. Except  for g ~ ~ -1 ,  the term sin 2 ~ 2 g / 2 7 e ~ g  
can be ignored, and unless g is comparable with 
a* (= a -1) the summation in (2.7) can be adequately 
approximated by one term, especially as we have 
chosen a comparatively large value for r 0, so tha t  near 
S = H ,  we have 

T~2 (S) = - ( -  1)h+k+z47~cbJ'cos- (S, g) sin 2 ~ r 0 g  (2.7a) 
vg 2~rog 

The transform of the remainder of the defect is 
given by 

Tol(S) = f + f ~  ( - c o s  2~RL" S 
L 

+ cos 2~(RL+EL)" S ) ,  (2"8) 

the summation being restricted to 38 atoms with 
Rz < r 0, and the first term, f,  representing the con- 
tribution of the interstitial atom itself. This expres- 
sion was evaluated numerically, with the help of the 
EDSAC, in the neighbourhood of the reciprocal-lattice 
points (2, 0, 0) and (4, 0, 0), in the section 1 = 0 of 
reciprocal space. The functions (1/ f)T~l(S)  and 
(1/f)T~2(S), along the line from S = 0 through (4,0,0) 
are shown in Fig. 2. I t  might be thought  from the 
relative smallness of T~I(S) on this line, tha t  the 
atoms within 4.7 /~ of the interstitial do not greatly 
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Fig. 2. Functions (_4) (]//)T62(S) and (B) (]/f)T~l(S) along 
the line from the origin of the  reciprocal latt ice th rough  
(4, 0, 0). Broken vertical lines denote the  reciprocal lat t ice 
points  (2, 0, 0) and (4, 0, 0). 



influence the  diffuse intensity.  Tha t  this is incorrect 
will be apparen t  on referring to Fig. 3, which shows 
the  distr ibution (1/f)T~l(S) in a section of reciprocal 

S = 0-556 S = 1.112 

From P a r t  I we now have t h a t  the diffuse intensi ty  
is given by 

52(8 ) ----[To(S)[ 2 . (2"9) 

Fig. 3. Distribution of T~I(S) in a section of reciprocal space. 
The three-dimensional distribution has almost cylindrical 
symmetry about the line from the origin through (4, 0, 0). 
The circles around the reciprocal-lattice points (2, 0, 0) and 
(4, 0, 0) mark the regions where T~.(S) is very large. T~(H)  = - ½ f  \ R3 / ' L 

Iso-diffusion contours have  been calculated in the  
neighbourhood of (2, 0, 0), and are shown in Fig. 4. 
Those near  (4, 0, 0) would be similar, with the  in- 
tensi ty  increased by  a factor  4, very nearly.  

Th~ ~ q n g e  of intensi ty of a Laue -Bragg  reflexion 
depends on T0(H ) = T~I(H)÷T~2(H ). Values of T~I(H ) 
for H = 2a* and for H = 4a* were obtained in the  
course of the  numerical  calculation of (2-8). F rom 
(2.6), for these values of H, we have 

(2.10) 

0 

space. Only in the  immediate  ne ighbourhood- -denoted  
by  circles---of the  reciprocM-lattice points is (1/f)T~2(S) 
much the  larger. Hence it is clear t ha t  the  greater  
pa r t  of the  to ta l  diffuse intensity,  or volume integral  
of [T~(S)I 9 over reciprocal space, originates from the 
displacement  of near  neighbours of the interstit ial .  I t  
is, however,  t rue  t h a t  near  reciprocal-lattice points, 
which are the  only regions in which the diffuse in- 
tens i ty  is relat ively strong, (and for which our cal- 
culations are accurate),  the  contr ibution from the 
displacement  of more remote a toms is the  greater.  
I t  of course follows t h a t  the  greater  pa r t  of the  reduc- 
t ion of Laue -Bragg  intensi ty  comes from the displace- 
ment  of a toms within 4.7 A of the  interstit ial .  Indeed,  
a rough calculation shows t h a t  the  displacement of 
neares t  neighbours affects the  Laue -Bragg  intensi ty 
to about  the  same extent  as the  displacement of all 
a toms which are more than  4.7 A away.  
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:Fig. 4. Iso-diffnsion contours around (2, 0, 0). The zero con- 
tour cuts the line through the origin and (2, 0, 0) at right 
angles at the reciprocal-lattice point, giving the typical 
lemnl.qcate shape for the contours. Values of (1/f)[T6(S)[ 
are shown;  contours  at 5, 10, 15, . . . .  

where Xz is the component  of Rz  in the direction of H.  
Numerical  evaluat ion gives T02 (H) = - 5.18HZf. F rom 
P a r t  I, the  height of the  Laue -Bragg  peak,  expressed 
as a fraction of t ha t  f rom the perfect crystal ,  is 

J~(H) 1 +2  T0(H) _ 1 +2  T0(H____) (2-11) 
J I ( H )  F ( H )  N f  

As might  have been expected, Laue -Bragg  intensi ty  
decreases near ly  in proport ion to H e . This 'artificial 
t empera ture  factor '  will not  be isotropic in reciprocal 
space, but  its value for any  reciprocal-lattice point  can 
be es t imated from Table 1 to be about  1 - 1 8 H 2 / N .  

The calculation of the  intensi ty effects which result  
from a vacancy  could be made  in the  same way,  with 
allowance for the fact  t h a t  the  vacancy  is a t  (0, 0, 0) 
of the primit ive tr igonal unit  cell, but  since the  in- 
tensi ty  effects are near ly  proport ional  to c 2, and the  
value of c for a vacancy  is about  one-fifth of t h a t  
for an intersti t ial  (Tucker & Sampson, 1954) it  would 
be unrealistic to include a contr ibution from the  
vacancies when the value of c 9 for intersti t ials is un- 
certain by some 40%. 

3 .  S c a t t e r i n g  b y  r a n d o m l y  d i s t r i b u t e d  d e f e c t s  

The results given in § 2 form the basis on which more 
realistic calculations can be made.  We first of all use 
the theory  given in P a r t  I ,  which we would expect  
to apply  when the  concentrat ion of defects is small, 
so t ha t  each a tom is influenced almost  entirely by  a 

near defect, and thedisplacements are otherwise small. 
The intersti t ials are assumed to be randomly  distri- 
buted,  but  this will include the  case of a r andom 
distr ibution of paired vacancy- inters t i t ia ls ,  since the  
influence of a vacancy  is small. Pu t t ing  the  rat io  of 

Table 1. Calculation of the change in Laue-Bragg intensity 

Pos i t ion  H T 1 (H) Tg.(H) T (H) T ( H ) / f g  2 ~ / J 1  

2, O, 0 0.555 - -  1.12f - -  1.60f - -  2 .72f  --  8.80 1 --  5 -44 /N 
4, O, 0 1.111 -- 5.02f -- 6.40f -- 11.42f -- 9.25 1 -- 22.84/N 

(-- 9.0 average) 
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the number of interstitial atoms to the total  number 
of atoms equal to p, it follows from Par t  I that  

J2(S) = Np]T~(S)]  ~ = p (V /v ) [T~(S ) ]  ~ , (3.1) 

where V is the volume of the crystal, and near (2, 0, 0) 
values of [T~(S)I 2 are as given in Fig. 4. The reflexions 
(2, 0, 0) and (4, 0, 0) will be reduced by a factor 
1-18 p H  2, which for (4, 0, 0) and p = 1% is 0-78. 

The general theory developed in Par t  I I  (Cochran 
& Kartha,  1956) gives identical results for small 
values of p, and not very different results even for 
p = 3%, about the greatest concentration that  can 
be expected (Kinchin & Pease, 1955). In applying the 
theory of Par t  I I  one finds tha t  T~(S)  is st i l lgiven by 
(2.7), but T~I(S) should now be taken as the first 
term in the expansion of (2.8) and the comparatively 
small effect of the interstitial itself cannot be allowed 
for, so tha t  

T~I(S) -- - 2 z f ~  eL" S sin 2zRz" S . (3.2) 
L 

We have evaluated this function along the line through 
(4, 0, 0), and in Fig. 5 we compare the result with 

..-'~ '. A 

Fig. 5. Function (1/f)Tsl(S) along the line through the origin 
and (4, 0, 0). The curve (A) gives the result of calculation 
using one expression and (B) tha t  obtained with another  
appropriate to the extended theory. 

that  given by (2.8). I t  will be seen that  the general 
effect will be to give larger values for ITo(S)] than 
were given by the first theory. :Near reciprocal-lattice 
points, however, where T0(S) is controlled by To~(S), 
the value of the former is not significantly changed 
from the value we derived earlier (Fig. 4). The diffuse 
intensity is now given by 

Jg. (S) = p(V /v )e -2MIT~(S ) I  2 , (3-3) 

where M = 2~9'pN(e • S) 2. When S passes through 
(4, 0, 0) it is readily calculated that  2M = 25.6pS 2. 
For (4, 0, 0) and p = 1%, e - 2 M  = 0-74; for p -- 3 %, 
e - 2 M  ----- 0.41. Thus we may predict tha t  as p increases, 
and conditions change from those for which our first 
t reatment  applies to those for which the second 
applies, the iso-diffusion contours near a reciprocal- 
lattice point remain approximately the same in shape, 
but  the relative amount of diffuse intensity in this 
region decreases somewhat, to the gain of other regions 

in reciprocal space. This follows from the fact tha t  
the fractional change in Laue-Bragg intensity is about 
the same on both treatments,  namely 0.78 and 0.74 
for p = 1%, 0.33 and 0.41 for p = 3% (for 4, 0, 0); 
and all the decrease must be distributed somewhere in 
reciprocal space. This agrees with the observation tha t  
on the whole a larger value of [To(S)I is given by the 
second treatment.  

I t  might be as well at this stage to emphasize the 
approximate nature of our calculations, and in par- 
ticular to point out tha t  Huntingdon's calculations 
of the effect of an interstitial, supplemented by the 
assumption of an inverse-square displacement of atoms 
at greater distances, cannot be entirely correct although 
they form the only basis for the calculation of X-ray 
scattering effects available at present. 

4. P o s s i b l e  e f fects  of  a n o n - r a n d o m  d i s t r i b u t i o n  
of  de f ec t s  

If the defects are not taken to be distributed at 
random, it is difficult to make quanti tat ive predic- 
tions of the intensity. While the theory can be 
adapted, it seems unlikely when there is an agglomera- 
tion of interstitials, or of vacancies, tha t  a principle 
of superposition will apply, and the following remarks 
should be regarded as having at best a qualitative 
significance. Suppose for example that  N p  interstitials 
are concentrated into N p  1 spheres each of radius R o, 
the distribution of the p / p l  interstitials being random 
inside each sphere and the agglomerates being ran- 
domly distributed in the crystal. The diffuse intensity 
can then be shown to be 

Np(p/p l ) lT ,~(S) lgQg(g)e  -2M, near S = H .  

Here Q(g) is the transform of a sphere of 
radius R0, and therefore does not differ much 
from sin 2zcRog/2zRog. The effect, therefore, is to 
increase the diffuse intensity within roughly /~1  of 
reciprocal-lattice points, and to decrease it elsewhere. 
The characteristic 'lemniscate' shape of the iso- 
diffusion contours is, however, preserved, and (always 
of course assuming tha t  the principle of superposition 
remains true) the lattice expansion and the Laue-  
Bragg intensities are the same as when the interstitials 
are distributed randomly throughout the crystal. 

The 'displacement spikes' of Brinkman (1954), or 
' thermal spikes' of Seitz (1949) cannot be regarded 
at all as regions in which the displacements of atoms 
can be described as the superposition of those caused 
by individual vacancies for interstitials. We might 
regard them as spherical regions in which atoms are 
so disordered as to make the electron density almost 
constant. Such a region behaves like a hole in the 
lattice, and would give iso-diffusion contours having 
spherical symmetry.  

In conclusion, we wish to thank the Director of the 
Mathematical Laboratory, Dr M. V. Wilkes, for per- 
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The Crystal Structure of Cycloserine Hydrochloride* 

BY J. W. TURLEY AND R. PEPINSKY 

X-Ray and Crystal Analysis Laboratory, Department of Physics, The Pennsylvania State University, 
State College, Pennsylvania, U.S.A.  

(Received 10 April 1956) 

The hydrochloride of cycloserine, 4-amino-3-isoxazolidone, is orthorhombic, P212121, with four 
molecules in a Lmit cell of dimensions a ---- 9.72, b ---- 10.34, c ---- 5-73 A. A successful X-ray analysis 
was accomplished by means of (h/c0) and (hOl) projections, and three-dimensional syntheses were 
used to refine atomic coordinates. Bond distances are normal, with the five-membered ring ap- 
pearing nearly planar. Each chlorine atom forms three weak hydrogen bonds with amino nitrogens, 
and the ring nitrogen and oxygen have a close approach to the slightly enolized ketone oxygen. 

I n t r o d u c t i o n  

Cycloserine is a new broad-spectrum antibiotic pro- 
duced by Streptomyces orchidaceus. The compound was 
discovered by R. Harned and E. Kropp, and isolated 
and crystalhzed by a research team of the Commercial 
Solvents Corporation (Welch, Putnam & Randall, 
1955; Harned, Hidy & Kropp la Baw, 1955). Subse- 
quent chemical and chnical studies on the material 
have been carried out jointly by groups at the Com- 
mercial Solvents Corporation and Eli Lilly and Com- 
pany. (The name for the compound used by the latter 
group is Seromycin.) 

Cycloserine is an unusual antibiotic, dissimilar in 
chemical structure with any previously identified, and 
the culture which produces it is different from any 
previously known. I t  is active against both gram- 
positive and gram-negative bacteria, and seems to 
differ in its mode of action from other antibiotics 
presently known. Contrary to in vitro results, it has 
a high degree of in vivo efficacy, and is equally effec- 
tive by oral and subcutaneous routes (Cuckler, Frost, 
McClelland & Solotorovsky, 1955). 

The investigation of the crystal structure of this 

* Taken from work submitted by J. W. Turley in partial 
fulfillment of requirements for the degree of Ph.D. 

compound was suggested by Dr Jerome Martin of the 
Commercial Solvents Corporation, and crystalline ma- 
terial was furnished by him and by Dr Harry Rose of 
Eli Lilly and Company. 

The X-ray analysis completely confirms the chem- 
ical elucidation of the antibiotic structure, and pro- 
vides accurate measurements of bond lengths and 
angles. 

E x p e r i m e n t a l  

Weissenberg photographs of cycloserine reveal the 
space group as P212121, with cell constants 

a = 9 . 7 2 ,  b =  10-34, c = 5 - 7 3 • .  

The crystal density, measured by the displacement 

method using cyclohexane, is 1.598 g.cm. -a, from 
which calculation shows four molecules per unit cell. 

X-ray intensity data for the (hkO) projection, the 
(hO1) projection, and five layers along the c axis, 
were obtained from Weissenberg moving-film photo- 
graphs taken with Cu K s  radiation; 616 symmetry- 
unrelated reflections were recorded with the multiple- 
film technique, and intensities were estimated visually 
by comparison with a scale made from a reflection 
from the same crystal. The c-axis layers were scaled 
to each other using (hO1) data. Lorentz and polariza- 


